module MXNet
Overview
This library is built on top of the core packages NDArray and
Symbol.
NDArray works with arrays in an imperative fashion, i.e. you
define how arrays will be transformed to get to an end
result. Symbol works with arrays in a declarative fashion,
i.e. you define the end result that is required (via a symbolic
graph) and the MXNet engine will use various optimizations to
determine the steps required to obtain this. With NDArray you have
a great deal of flexibility when composing operations, and you can
easily step through your code and inspect the values of arrays,
which helps with debugging. Unfortunately, this flexibility comes at
a performance cost when compared to Symbol, which can perform
optimizations on the symbolic graph.
Defined in:
mxnet.crmxnet/autograd.cr
mxnet/base.cr
mxnet/cached_op.cr
mxnet/context.cr
mxnet/executor.cr
mxnet/gluon.cr
mxnet/gluon/block.cr
mxnet/gluon/data.cr
mxnet/gluon/data/data_loader.cr
mxnet/gluon/data/dataset.cr
mxnet/gluon/data/sampler.cr
mxnet/gluon/data/vision/mnist.cr
mxnet/gluon/loss.cr
mxnet/gluon/nn.cr
mxnet/gluon/nn/activations.cr
mxnet/gluon/nn/layers.cr
mxnet/gluon/parameter.cr
mxnet/gluon/trainer.cr
mxnet/gluon/utils.cr
mxnet/initializer.cr
mxnet/libmxnet.cr
mxnet/name/manager.cr
mxnet/ndarray.cr
mxnet/operations.cr
mxnet/optimizer.cr
mxnet/random.cr
mxnet/symbol.cr
mxnet/util.cr
Constant Summary
-
VERSION =
"0.2.0"
Class Method Summary
-
.cpu(device_id : Int32 = 0)
Returns a CPU context.
-
.gpu(device_id : Int32 = 0)
Returns a GPU context.
Class Method Detail
Returns a CPU context.
This function is equivalent to MXNet::Context.cpu.
Parameters
- device_id (
Int32, default = 0) Device id of the device. Not required for the CPU context. Included to make the interface compatible with GPU contexts.
Returns a GPU context.
This function is equivalent to MXNet::Context.gpu.
Parameters
- device_id (
Int32, default = 0) Device id of the device. Required for the GPU contexts.