class MXNet::Gluon::NN::Internal::Conv
Overview
Base class for convolution layers.
This layer creates a convolution kernel that is convolved with the input to produce a tensor of outputs.
Direct Known Subclasses
Defined in:
mxnet/gluon/nn/layers.crConstructors
Instance Method Summary
- #act
- #act=(act : MXNet::Gluon::NN::Activation?)
- #act? : MXNet::Gluon::NN::Activation?
- #bias
- #bias=(bias : MXNet::Gluon::Parameter?)
- #bias? : MXNet::Gluon::Parameter?
-
#hybrid_forward(inputs : Array(T), params : Hash(String, T)) : Array(T) forall T
Override to construct symbolic graph for this
HybridBlock
. - #weight
- #weight=(weight : MXNet::Gluon::Parameter?)
- #weight? : MXNet::Gluon::Parameter?
Instance methods inherited from class MXNet::Gluon::HybridBlock
export(filename, epoch = 0)
export,
forward(inputs : Array(T)) : Array(T) forall T
forward,
hybrid_forward(inputs : Array(T), params : Hash(String, T) = {} of String => T) : Array(T) forall T
hybrid_forward,
hybridize(active = true, flags = {} of String => String)
hybridize,
register_child(block, name = nil)
register_child
Instance methods inherited from module MXNet::Gluon::CachedGraph
clear_cache
clear_cache,
infer_dtype(args)
infer_dtype,
infer_shape(args)
infer_shape
Constructor methods inherited from module MXNet::Gluon::CachedGraph
new(**kwargs)
new
Instance methods inherited from class MXNet::Gluon::Block
call(inputs : Array(T)) : Array(T) forall T
call,
children
children,
collect_params(selector = nil)
collect_params,
forward(inputs : Array(T)) : Array(T) forall T
forward,
get_attr(name : String) : Block | Parameter | Nil
get_attr,
hybridize(active = true)
hybridize,
init(init = nil, ctx = nil, force_reinit = false)
init,
load_parameters(fname, ctx = MXNet.cpu, allow_missing = false, ignore_extra = false)
load_parameters,
params : MXNet::Gluon::ParameterDict
params,
prefix : String
prefix,
register_child(block, name = nil)
register_child,
register_parameter(param, name = nil)
register_parameter,
save_parameters(fname)
save_parameters,
scope : MXNet::Gluon::BlockScope?
scope,
set_attr(name : String, value : Block | Parameter | Nil)
set_attr,
with_name_scope(&)
with_name_scope
Constructor methods inherited from class MXNet::Gluon::Block
new(prefix = nil, params = nil)
new
Constructor Detail
def self.new(*, channels : Int32, kernel_size : Array(Int32), strides : Array(Int32) | Int32, padding : Array(Int32) | Int32, dilation : Array(Int32) | Int32, layout : String, in_channels = 0, use_bias = true, activation = nil, **kwargs)
#
Creates a new instance.
N
is the number of dimensions of the convolution.
Parameters
- channels (
Int32
) The dimensionality of the output space (the number of output channels in the convolution). - kernel_size (
Array(Int32)
of N integers) Specifies the dimensions of the convolution window. - strides (
Int32
orArray(Int32)
of N integers) Specifies the strides of the convolution. - padding (
Int32
orArray(Int32)
of N integers) Ifpadding
is non-zero, then the input is implicitly zero-padded on both sides forpadding
number of points. - dilation (
Int32
orArray(Int32)
of N integers) Specifies the dilation rate to use for dilated convolution. - layout (
String
) Dimension ordering of data and weight. Can be "NCW", "NWC", "NCHW", "NHWC", "NCDHW", "NDHWC", etc. "N", "C", "H", "W", "D" stands for batch, channel, height, width and depth dimensions respectively. Convolution is performed over "D", "H", and "W" dimensions. - in_channels (
Int32
, default =0
) The number of input channels to this layer. If not specified, initialization will be deferred to the first time#forward
is called andin_channels
will be inferred from the shape of the input data. - use_bias (
Bool
, default =true
) Whether the layer uses a bias vector. - activation (
String
, optional) Activation function to use. If nothing is specified, no activation is applied (it acts like "linear" activation:a(x) = x
).
Instance Method Detail
def hybrid_forward(inputs : Array(T), params : Hash(String, T)) : Array(T) forall T
#
Description copied from class MXNet::Gluon::HybridBlock
Override to construct symbolic graph for this HybridBlock
.