class MXNet::Gluon::NN::Dense
Overview
A densely-connected neural network layer.
Implements the operation:
output = activation(dot(input, weight) + bias)
where "activation" is the element-wise activation function passed
as the activation
argument, "weight" is a weights matrix created
by the layer, and "bias" is a bias vector created by the layer
(if argument use_bias
is true
).
Note: the input must be a tensor with rank two. Use
flatten
to convert it to rank two if necessary.
Defined in:
mxnet/gluon/nn/layers.crConstructors
-
.new(units : Int32, in_units : Int32 = 0, use_bias = true, activation = nil, **kwargs)
Creates a new instance.
Instance Method Summary
- #act
- #act=(act : MXNet::Gluon::NN::Activation?)
- #act? : MXNet::Gluon::NN::Activation?
- #bias
- #bias=(bias : MXNet::Gluon::Parameter?)
- #bias? : MXNet::Gluon::Parameter?
-
#hybrid_forward(inputs : Array(T), params : Hash(String, T)) : Array(T) forall T
Override to construct symbolic graph for this
HybridBlock
. - #weight
- #weight=(weight : MXNet::Gluon::Parameter?)
- #weight? : MXNet::Gluon::Parameter?
Instance methods inherited from class MXNet::Gluon::HybridBlock
export(filename, epoch = 0)
export,
forward(inputs : Array(T)) : Array(T) forall T
forward,
hybrid_forward(inputs : Array(T), params : Hash(String, T) = {} of String => T) : Array(T) forall T
hybrid_forward,
hybridize(active = true, flags = {} of String => String)
hybridize,
register_child(block, name = nil)
register_child
Instance methods inherited from module MXNet::Gluon::CachedGraph
clear_cache
clear_cache,
infer_dtype(args)
infer_dtype,
infer_shape(args)
infer_shape
Constructor methods inherited from module MXNet::Gluon::CachedGraph
new(**kwargs)
new
Instance methods inherited from class MXNet::Gluon::Block
call(inputs : Array(T)) : Array(T) forall T
call,
children
children,
collect_params(selector = nil)
collect_params,
forward(inputs : Array(T)) : Array(T) forall T
forward,
get_attr(name : String) : Block | Parameter | Nil
get_attr,
hybridize(active = true)
hybridize,
init(init = nil, ctx = nil, force_reinit = false)
init,
load_parameters(fname, ctx = MXNet.cpu, allow_missing = false, ignore_extra = false)
load_parameters,
params : MXNet::Gluon::ParameterDict
params,
prefix : String
prefix,
register_child(block, name = nil)
register_child,
register_parameter(param, name = nil)
register_parameter,
save_parameters(fname)
save_parameters,
scope : MXNet::Gluon::BlockScope?
scope,
set_attr(name : String, value : Block | Parameter | Nil)
set_attr,
with_name_scope(&)
with_name_scope
Constructor methods inherited from class MXNet::Gluon::Block
new(prefix = nil, params = nil)
new
Constructor Detail
Creates a new instance.
Parameters
- units (
Int32
) Dimensionality of the output space. - in_units (
Int32
, optional) Size of the input data. If nothing is specified, initialization is deferred to the first time#forward
is called andin_units
will be inferred from the shape of input data. - use_bias (
Bool
, default =true
) Whether the layer uses a bias vector. - activation (
String
, optional) Activation function to use. If nothing is specified, no activation is applied (it acts like "linear" activation:a(x) = x
).
Instance Method Detail
def hybrid_forward(inputs : Array(T), params : Hash(String, T)) : Array(T) forall T
#
Description copied from class MXNet::Gluon::HybridBlock
Override to construct symbolic graph for this HybridBlock
.