class MXNet::Gluon::Loss::L2Loss

Overview

Calculates the mean squared error between prediction and label.

Inputs "prediction" and "label" can have arbitrary shape as long as they have the same number of elements.

Defined in:

mxnet/gluon/loss.cr

Constructors

Constructor methods inherited from class MXNet::Gluon::Loss

new(weight : Float64?, batch_axis : Int32, **kwargs) new

Instance methods inherited from class MXNet::Gluon::HybridBlock

export(filename, epoch = 0) export, forward(inputs : Array(T)) : Array(T) forall T forward, hybrid_forward(inputs : Array(T), params : Hash(String, T) = {} of String => T) : Array(T) forall T hybrid_forward, hybridize(active = true, flags = {} of String => String) hybridize, register_child(block, name = nil) register_child

Instance methods inherited from module MXNet::Gluon::CachedGraph

clear_cache clear_cache, infer_dtype(args) infer_dtype, infer_shape(args) infer_shape

Constructor methods inherited from module MXNet::Gluon::CachedGraph

new(**kwargs) new

Instance methods inherited from class MXNet::Gluon::Block

call(inputs : Array(T)) : Array(T) forall T call, children children, collect_params(selector = nil) collect_params, forward(inputs : Array(T)) : Array(T) forall T forward, get_attr(name : String) : Block | Parameter | Nil get_attr, hybridize(active = true) hybridize, init(init = nil, ctx = nil, force_reinit = false) init, load_parameters(fname, ctx = MXNet.cpu, allow_missing = false, ignore_extra = false) load_parameters, params : MXNet::Gluon::ParameterDict params, prefix : String prefix, register_child(block, name = nil) register_child, register_parameter(param, name = nil) register_parameter, save_parameters(fname) save_parameters, scope : MXNet::Gluon::BlockScope? scope, set_attr(name : String, value : Block | Parameter | Nil) set_attr, with_name_scope(&) with_name_scope

Constructor methods inherited from class MXNet::Gluon::Block

new(prefix = nil, params = nil) new

Constructor Detail

def self.new(weight = 1.0, batch_axis = 0, **kwargs) #

Creates a new instance.

Parameters

  • weight (Float or nil, default = 1.0) Global scalar weight for loss.
  • batch_axis (Int, default 0) The axis that represents the mini-batch.

[View source]