class MXNet::Symbol::Ops
- MXNet::Symbol::Ops
- Reference
- Object
Defined in:
Class Method Summary
- ._abs(data : MXNet::Symbol?, **kwargs)
- ._Activation(data : MXNet::Symbol?, act_type, **kwargs)
- ._adam_update(weight : MXNet::Symbol?, grad : MXNet::Symbol?, mean : MXNet::Symbol?, var : MXNet::Symbol?, lr, **kwargs)
- ._add_n(args : Array(MXNet::Symbol), **kwargs)
- ._arccos(data : MXNet::Symbol?, **kwargs)
- ._arccosh(data : MXNet::Symbol?, **kwargs)
- ._arcsin(data : MXNet::Symbol?, **kwargs)
- ._arcsinh(data : MXNet::Symbol?, **kwargs)
- ._arctan(data : MXNet::Symbol?, **kwargs)
- ._arctanh(data : MXNet::Symbol?, **kwargs)
- ._argmax(data : MXNet::Symbol?, **kwargs)
- ._argmax_channel(data : MXNet::Symbol?, **kwargs)
- ._argmin(data : MXNet::Symbol?, **kwargs)
- ._argsort(data : MXNet::Symbol?, **kwargs)
- ._batch_dot(lhs : MXNet::Symbol?, rhs : MXNet::Symbol?, **kwargs)
- ._batch_take(a : MXNet::Symbol?, indices : MXNet::Symbol?, **kwargs)
- ._BatchNorm(data : MXNet::Symbol?, gamma : MXNet::Symbol?, beta : MXNet::Symbol?, moving_mean : MXNet::Symbol?, moving_var : MXNet::Symbol?, **kwargs)
- ._BatchNorm_v1(data : MXNet::Symbol?, gamma : MXNet::Symbol?, beta : MXNet::Symbol?, **kwargs)
- ._BilinearSampler(data : MXNet::Symbol?, grid : MXNet::Symbol?, **kwargs)
- ._BlockGrad(data : MXNet::Symbol?, **kwargs)
- ._broadcast_add(lhs : MXNet::Symbol?, rhs : MXNet::Symbol?, **kwargs)
- ._broadcast_axes(data : MXNet::Symbol?, **kwargs)
- ._broadcast_axis(data : MXNet::Symbol?, **kwargs)
- ._broadcast_div(lhs : MXNet::Symbol?, rhs : MXNet::Symbol?, **kwargs)
- ._broadcast_equal(lhs : MXNet::Symbol?, rhs : MXNet::Symbol?, **kwargs)
- ._broadcast_greater(lhs : MXNet::Symbol?, rhs : MXNet::Symbol?, **kwargs)
- ._broadcast_greater_equal(lhs : MXNet::Symbol?, rhs : MXNet::Symbol?, **kwargs)
- ._broadcast_hypot(lhs : MXNet::Symbol?, rhs : MXNet::Symbol?, **kwargs)
- ._broadcast_lesser(lhs : MXNet::Symbol?, rhs : MXNet::Symbol?, **kwargs)
- ._broadcast_lesser_equal(lhs : MXNet::Symbol?, rhs : MXNet::Symbol?, **kwargs)
- ._broadcast_like(lhs : MXNet::Symbol?, rhs : MXNet::Symbol?, **kwargs)
- ._broadcast_logical_and(lhs : MXNet::Symbol?, rhs : MXNet::Symbol?, **kwargs)
- ._broadcast_logical_or(lhs : MXNet::Symbol?, rhs : MXNet::Symbol?, **kwargs)
- ._broadcast_logical_xor(lhs : MXNet::Symbol?, rhs : MXNet::Symbol?, **kwargs)
- ._broadcast_maximum(lhs : MXNet::Symbol?, rhs : MXNet::Symbol?, **kwargs)
- ._broadcast_minimum(lhs : MXNet::Symbol?, rhs : MXNet::Symbol?, **kwargs)
- ._broadcast_minus(lhs : MXNet::Symbol?, rhs : MXNet::Symbol?, **kwargs)
- ._broadcast_mod(lhs : MXNet::Symbol?, rhs : MXNet::Symbol?, **kwargs)
- ._broadcast_mul(lhs : MXNet::Symbol?, rhs : MXNet::Symbol?, **kwargs)
- ._broadcast_not_equal(lhs : MXNet::Symbol?, rhs : MXNet::Symbol?, **kwargs)
- ._broadcast_plus(lhs : MXNet::Symbol?, rhs : MXNet::Symbol?, **kwargs)
- ._broadcast_power(lhs : MXNet::Symbol?, rhs : MXNet::Symbol?, **kwargs)
- ._broadcast_sub(lhs : MXNet::Symbol?, rhs : MXNet::Symbol?, **kwargs)
- ._broadcast_to(data : MXNet::Symbol?, **kwargs)
- ._Cast(data : MXNet::Symbol?, dtype, **kwargs)
- ._cast(data : MXNet::Symbol?, dtype, **kwargs)
- ._cast_storage(data : MXNet::Symbol?, stype, **kwargs)
- ._cbrt(data : MXNet::Symbol?, **kwargs)
- ._ceil(data : MXNet::Symbol?, **kwargs)
- ._choose_element_0index(**kwargs)
- ._clip(data : MXNet::Symbol?, a_min, a_max, **kwargs)
- ._Concat(data : Array(MXNet::Symbol), num_args, **kwargs)
- ._concat(data : Array(MXNet::Symbol), num_args, **kwargs)
- ._Convolution(data : MXNet::Symbol?, weight : MXNet::Symbol?, bias : MXNet::Symbol?, kernel, num_filter, **kwargs)
- ._Convolution_v1(data : MXNet::Symbol?, weight : MXNet::Symbol?, bias : MXNet::Symbol?, kernel, num_filter, **kwargs)
- ._Correlation(data1 : MXNet::Symbol?, data2 : MXNet::Symbol?, **kwargs)
- ._cos(data : MXNet::Symbol?, **kwargs)
- ._cosh(data : MXNet::Symbol?, **kwargs)
- ._Crop(num_args, **kwargs)
- ._crop(data : MXNet::Symbol?, begin _begin, end _end, **kwargs)
- ._CuDNNBatchNorm(data : MXNet::Symbol?, gamma : MXNet::Symbol?, beta : MXNet::Symbol?, moving_mean : MXNet::Symbol?, moving_var : MXNet::Symbol?, **kwargs)
- ._Custom(data : Array(MXNet::Symbol), op_type, **kwargs)
- ._Deconvolution(data : MXNet::Symbol?, weight : MXNet::Symbol?, bias : MXNet::Symbol?, kernel, num_filter, **kwargs)
- ._degrees(data : MXNet::Symbol?, **kwargs)
- ._depth_to_space(data : MXNet::Symbol?, block_size, **kwargs)
- ._diag(data : MXNet::Symbol?, **kwargs)
- ._dot(lhs : MXNet::Symbol?, rhs : MXNet::Symbol?, **kwargs)
- ._Dropout(data : MXNet::Symbol?, **kwargs)
- ._ElementWiseSum(args : Array(MXNet::Symbol), **kwargs)
- ._elemwise_add(lhs : MXNet::Symbol?, rhs : MXNet::Symbol?, **kwargs)
- ._elemwise_div(lhs : MXNet::Symbol?, rhs : MXNet::Symbol?, **kwargs)
- ._elemwise_mul(lhs : MXNet::Symbol?, rhs : MXNet::Symbol?, **kwargs)
- ._elemwise_sub(lhs : MXNet::Symbol?, rhs : MXNet::Symbol?, **kwargs)
- ._Embedding(data : MXNet::Symbol?, weight : MXNet::Symbol?, input_dim, output_dim, **kwargs)
- ._exp(data : MXNet::Symbol?, **kwargs)
- ._expand_dims(data : MXNet::Symbol?, axis, **kwargs)
- ._expm1(data : MXNet::Symbol?, **kwargs)
- ._fill_element_0index(**kwargs)
- ._fix(data : MXNet::Symbol?, **kwargs)
- ._Flatten(data : MXNet::Symbol?, **kwargs)
- ._flatten(data : MXNet::Symbol?, **kwargs)
- ._flip(data : MXNet::Symbol?, axis, **kwargs)
- ._floor(data : MXNet::Symbol?, **kwargs)
- ._ftml_update(weight : MXNet::Symbol?, grad : MXNet::Symbol?, d : MXNet::Symbol?, v : MXNet::Symbol?, z : MXNet::Symbol?, lr, t, **kwargs)
- ._ftrl_update(weight : MXNet::Symbol?, grad : MXNet::Symbol?, z : MXNet::Symbol?, n : MXNet::Symbol?, lr, **kwargs)
- ._FullyConnected(data : MXNet::Symbol?, weight : MXNet::Symbol?, bias : MXNet::Symbol?, num_hidden, **kwargs)
- ._gamma(data : MXNet::Symbol?, **kwargs)
- ._gammaln(data : MXNet::Symbol?, **kwargs)
- ._gather_nd(data : MXNet::Symbol?, indices : MXNet::Symbol?, **kwargs)
- ._GridGenerator(data : MXNet::Symbol?, transform_type, **kwargs)
- ._hard_sigmoid(data : MXNet::Symbol?, **kwargs)
- ._identity(data : MXNet::Symbol?, **kwargs)
- ._IdentityAttachKLSparseReg(data : MXNet::Symbol?, **kwargs)
- ._InstanceNorm(data : MXNet::Symbol?, gamma : MXNet::Symbol?, beta : MXNet::Symbol?, **kwargs)
- ._khatri_rao(args : Array(MXNet::Symbol), **kwargs)
- ._L2Normalization(data : MXNet::Symbol?, **kwargs)
- ._LayerNorm(data : MXNet::Symbol?, gamma : MXNet::Symbol?, beta : MXNet::Symbol?, **kwargs)
- ._LeakyReLU(data : MXNet::Symbol?, gamma : MXNet::Symbol?, **kwargs)
- ._linalg_gelqf(a : MXNet::Symbol?, **kwargs)
- ._linalg_gemm(a : MXNet::Symbol?, b : MXNet::Symbol?, c : MXNet::Symbol?, **kwargs)
- ._linalg_gemm2(a : MXNet::Symbol?, b : MXNet::Symbol?, **kwargs)
- ._linalg_potrf(a : MXNet::Symbol?, **kwargs)
- ._linalg_potri(a : MXNet::Symbol?, **kwargs)
- ._linalg_sumlogdiag(a : MXNet::Symbol?, **kwargs)
- ._linalg_syrk(a : MXNet::Symbol?, **kwargs)
- ._linalg_trmm(a : MXNet::Symbol?, b : MXNet::Symbol?, **kwargs)
- ._linalg_trsm(a : MXNet::Symbol?, b : MXNet::Symbol?, **kwargs)
- ._LinearRegressionOutput(data : MXNet::Symbol?, label : MXNet::Symbol?, **kwargs)
- ._log(data : MXNet::Symbol?, **kwargs)
- ._log10(data : MXNet::Symbol?, **kwargs)
- ._log1p(data : MXNet::Symbol?, **kwargs)
- ._log2(data : MXNet::Symbol?, **kwargs)
- ._log_softmax(data : MXNet::Symbol?, **kwargs)
- ._logical_not(data : MXNet::Symbol?, **kwargs)
- ._LogisticRegressionOutput(data : MXNet::Symbol?, label : MXNet::Symbol?, **kwargs)
- ._LRN(data : MXNet::Symbol?, nsize, **kwargs)
- ._MAERegressionOutput(data : MXNet::Symbol?, label : MXNet::Symbol?, **kwargs)
- ._make_loss(data : MXNet::Symbol?, **kwargs)
- ._MakeLoss(data : MXNet::Symbol?, **kwargs)
- ._max(data : MXNet::Symbol?, **kwargs)
- ._max_axis(data : MXNet::Symbol?, **kwargs)
- ._mean(data : MXNet::Symbol?, **kwargs)
- ._min(data : MXNet::Symbol?, **kwargs)
- ._min_axis(data : MXNet::Symbol?, **kwargs)
- ._mp_sgd_mom_update(weight : MXNet::Symbol?, grad : MXNet::Symbol?, mom : MXNet::Symbol?, weight32 : MXNet::Symbol?, lr, **kwargs)
- ._mp_sgd_update(weight : MXNet::Symbol?, grad : MXNet::Symbol?, weight32 : MXNet::Symbol?, lr, **kwargs)
- ._nanprod(data : MXNet::Symbol?, **kwargs)
- ._nansum(data : MXNet::Symbol?, **kwargs)
- ._negative(data : MXNet::Symbol?, **kwargs)
- ._norm(data : MXNet::Symbol?, **kwargs)
- ._normal(**kwargs)
- ._one_hot(indices : MXNet::Symbol?, depth, **kwargs)
- ._ones_like(data : MXNet::Symbol?, **kwargs)
- ._Pad(data : MXNet::Symbol?, mode, pad_width, **kwargs)
- ._pad(data : MXNet::Symbol?, mode, pad_width, **kwargs)
- ._pick(data : MXNet::Symbol?, index : MXNet::Symbol?, **kwargs)
- ._Pooling(data : MXNet::Symbol?, **kwargs)
- ._Pooling_v1(data : MXNet::Symbol?, **kwargs)
- ._prod(data : MXNet::Symbol?, **kwargs)
- ._radians(data : MXNet::Symbol?, **kwargs)
- ._random_exponential(**kwargs)
- ._random_gamma(**kwargs)
- ._random_generalized_negative_binomial(**kwargs)
- ._random_negative_binomial(**kwargs)
- ._random_normal(**kwargs)
- ._random_poisson(**kwargs)
- ._random_randint(low, high, **kwargs)
- ._random_uniform(**kwargs)
- ._ravel_multi_index(data : MXNet::Symbol?, **kwargs)
- ._rcbrt(data : MXNet::Symbol?, **kwargs)
- ._reciprocal(data : MXNet::Symbol?, **kwargs)
- ._relu(data : MXNet::Symbol?, **kwargs)
- ._repeat(data : MXNet::Symbol?, repeats, **kwargs)
- ._Reshape(data : MXNet::Symbol?, **kwargs)
- ._reshape(data : MXNet::Symbol?, shape, **kwargs)
- ._reshape_like(lhs : MXNet::Symbol?, rhs : MXNet::Symbol?, **kwargs)
- ._reverse(data : MXNet::Symbol?, axis, **kwargs)
- ._rint(data : MXNet::Symbol?, **kwargs)
- ._rmsprop_update(weight : MXNet::Symbol?, grad : MXNet::Symbol?, n : MXNet::Symbol?, lr, **kwargs)
- ._rmspropalex_update(weight : MXNet::Symbol?, grad : MXNet::Symbol?, n : MXNet::Symbol?, g : MXNet::Symbol?, delta : MXNet::Symbol?, lr, **kwargs)
- ._RNN(data : MXNet::Symbol?, parameters : MXNet::Symbol?, state : MXNet::Symbol?, state_cell : MXNet::Symbol?, state_size, num_layers, mode, **kwargs)
- ._ROIPooling(data : MXNet::Symbol?, rois : MXNet::Symbol?, pooled_size, spatial_scale, **kwargs)
- ._round(data : MXNet::Symbol?, **kwargs)
- ._rsqrt(data : MXNet::Symbol?, **kwargs)
- ._sample_exponential(lam : MXNet::Symbol?, **kwargs)
- ._sample_gamma(alpha : MXNet::Symbol?, beta : MXNet::Symbol?, **kwargs)
- ._sample_generalized_negative_binomial(mu : MXNet::Symbol?, alpha : MXNet::Symbol?, **kwargs)
- ._sample_multinomial(data : MXNet::Symbol?, **kwargs)
- ._sample_negative_binomial(k : MXNet::Symbol?, p : MXNet::Symbol?, **kwargs)
- ._sample_normal(mu : MXNet::Symbol?, sigma : MXNet::Symbol?, **kwargs)
- ._sample_poisson(lam : MXNet::Symbol?, **kwargs)
- ._sample_uniform(low : MXNet::Symbol?, high : MXNet::Symbol?, **kwargs)
- ._scatter_nd(data : MXNet::Symbol?, indices : MXNet::Symbol?, shape, **kwargs)
- ._SequenceLast(data : MXNet::Symbol?, sequence_length : MXNet::Symbol?, **kwargs)
- ._SequenceMask(data : MXNet::Symbol?, sequence_length : MXNet::Symbol?, **kwargs)
- ._SequenceReverse(data : MXNet::Symbol?, sequence_length : MXNet::Symbol?, **kwargs)
- ._sgd_mom_update(weight : MXNet::Symbol?, grad : MXNet::Symbol?, mom : MXNet::Symbol?, lr, **kwargs)
- ._sgd_update(weight : MXNet::Symbol?, grad : MXNet::Symbol?, lr, **kwargs)
- ._shape_array(data : MXNet::Symbol?, **kwargs)
- ._shuffle(data : MXNet::Symbol?, **kwargs)
- ._sigmoid(data : MXNet::Symbol?, **kwargs)
- ._sign(data : MXNet::Symbol?, **kwargs)
- ._signsgd_update(weight : MXNet::Symbol?, grad : MXNet::Symbol?, lr, **kwargs)
- ._signum_update(weight : MXNet::Symbol?, grad : MXNet::Symbol?, mom : MXNet::Symbol?, lr, **kwargs)
- ._sin(data : MXNet::Symbol?, **kwargs)
- ._sinh(data : MXNet::Symbol?, **kwargs)
- ._size_array(data : MXNet::Symbol?, **kwargs)
- ._slice(data : MXNet::Symbol?, begin _begin, end _end, **kwargs)
- ._slice_axis(data : MXNet::Symbol?, axis, begin _begin, end _end, **kwargs)
- ._slice_like(data : MXNet::Symbol?, shape_like : MXNet::Symbol?, **kwargs)
- ._SliceChannel(data : MXNet::Symbol?, num_outputs, **kwargs)
- ._smooth_l1(data : MXNet::Symbol?, scalar, **kwargs)
- ._Softmax(data : MXNet::Symbol?, **kwargs)
- ._softmax(data : MXNet::Symbol?, **kwargs)
- ._softmax_cross_entropy(data : MXNet::Symbol?, label : MXNet::Symbol?, **kwargs)
- ._SoftmaxActivation(data : MXNet::Symbol?, **kwargs)
- ._SoftmaxOutput(data : MXNet::Symbol?, label : MXNet::Symbol?, **kwargs)
- ._softsign(data : MXNet::Symbol?, **kwargs)
- ._sort(data : MXNet::Symbol?, **kwargs)
- ._space_to_depth(data : MXNet::Symbol?, block_size, **kwargs)
- ._SpatialTransformer(data : MXNet::Symbol?, loc : MXNet::Symbol?, transform_type, sampler_type, **kwargs)
- ._split(data : MXNet::Symbol?, num_outputs, **kwargs)
- ._sqrt(data : MXNet::Symbol?, **kwargs)
- ._square(data : MXNet::Symbol?, **kwargs)
- ._squeeze(data : Array(MXNet::Symbol), **kwargs)
- ._stack(data : Array(MXNet::Symbol), num_args, **kwargs)
- ._stop_gradient(data : MXNet::Symbol?, **kwargs)
- ._sum(data : MXNet::Symbol?, **kwargs)
- ._sum_axis(data : MXNet::Symbol?, **kwargs)
- ._SVMOutput(data : MXNet::Symbol?, label : MXNet::Symbol?, **kwargs)
- ._swapaxes(data : MXNet::Symbol?, **kwargs)
- ._SwapAxis(data : MXNet::Symbol?, **kwargs)
- ._take(a : MXNet::Symbol?, indices : MXNet::Symbol?, **kwargs)
- ._tan(data : MXNet::Symbol?, **kwargs)
- ._tanh(data : MXNet::Symbol?, **kwargs)
- ._tile(data : MXNet::Symbol?, reps, **kwargs)
- ._topk(data : MXNet::Symbol?, **kwargs)
- ._transpose(data : MXNet::Symbol?, **kwargs)
- ._trunc(data : MXNet::Symbol?, **kwargs)
- ._uniform(**kwargs)
- ._unravel_index(data : MXNet::Symbol?, **kwargs)
- ._UpSampling(data : Array(MXNet::Symbol), scale, sample_type, num_args, **kwargs)
- ._where(condition : MXNet::Symbol?, x : MXNet::Symbol?, y : MXNet::Symbol?, **kwargs)
- ._zeros_like(data : MXNet::Symbol?, **kwargs)
Class Method Detail
def self._adam_update(weight : MXNet::Symbol?, grad : MXNet::Symbol?, mean : MXNet::Symbol?, var : MXNet::Symbol?, lr, **kwargs)
#
def self._BatchNorm(data : MXNet::Symbol?, gamma : MXNet::Symbol?, beta : MXNet::Symbol?, moving_mean : MXNet::Symbol?, moving_var : MXNet::Symbol?, **kwargs)
#
def self._BatchNorm_v1(data : MXNet::Symbol?, gamma : MXNet::Symbol?, beta : MXNet::Symbol?, **kwargs)
#
def self._Convolution(data : MXNet::Symbol?, weight : MXNet::Symbol?, bias : MXNet::Symbol?, kernel, num_filter, **kwargs)
#
def self._Convolution_v1(data : MXNet::Symbol?, weight : MXNet::Symbol?, bias : MXNet::Symbol?, kernel, num_filter, **kwargs)
#
def self._CuDNNBatchNorm(data : MXNet::Symbol?, gamma : MXNet::Symbol?, beta : MXNet::Symbol?, moving_mean : MXNet::Symbol?, moving_var : MXNet::Symbol?, **kwargs)
#
def self._Deconvolution(data : MXNet::Symbol?, weight : MXNet::Symbol?, bias : MXNet::Symbol?, kernel, num_filter, **kwargs)
#
def self._Embedding(data : MXNet::Symbol?, weight : MXNet::Symbol?, input_dim, output_dim, **kwargs)
#
def self._ftml_update(weight : MXNet::Symbol?, grad : MXNet::Symbol?, d : MXNet::Symbol?, v : MXNet::Symbol?, z : MXNet::Symbol?, lr, t, **kwargs)
#
def self._ftrl_update(weight : MXNet::Symbol?, grad : MXNet::Symbol?, z : MXNet::Symbol?, n : MXNet::Symbol?, lr, **kwargs)
#
def self._InstanceNorm(data : MXNet::Symbol?, gamma : MXNet::Symbol?, beta : MXNet::Symbol?, **kwargs)
#
def self._LayerNorm(data : MXNet::Symbol?, gamma : MXNet::Symbol?, beta : MXNet::Symbol?, **kwargs)
#
def self._mp_sgd_mom_update(weight : MXNet::Symbol?, grad : MXNet::Symbol?, mom : MXNet::Symbol?, weight32 : MXNet::Symbol?, lr, **kwargs)
#
def self._mp_sgd_update(weight : MXNet::Symbol?, grad : MXNet::Symbol?, weight32 : MXNet::Symbol?, lr, **kwargs)
#
def self._rmsprop_update(weight : MXNet::Symbol?, grad : MXNet::Symbol?, n : MXNet::Symbol?, lr, **kwargs)
#
def self._rmspropalex_update(weight : MXNet::Symbol?, grad : MXNet::Symbol?, n : MXNet::Symbol?, g : MXNet::Symbol?, delta : MXNet::Symbol?, lr, **kwargs)
#
def self._RNN(data : MXNet::Symbol?, parameters : MXNet::Symbol?, state : MXNet::Symbol?, state_cell : MXNet::Symbol?, state_size, num_layers, mode, **kwargs)
#
def self._ROIPooling(data : MXNet::Symbol?, rois : MXNet::Symbol?, pooled_size, spatial_scale, **kwargs)
#
def self._sample_generalized_negative_binomial(mu : MXNet::Symbol?, alpha : MXNet::Symbol?, **kwargs)
#
def self._sgd_mom_update(weight : MXNet::Symbol?, grad : MXNet::Symbol?, mom : MXNet::Symbol?, lr, **kwargs)
#
def self._signum_update(weight : MXNet::Symbol?, grad : MXNet::Symbol?, mom : MXNet::Symbol?, lr, **kwargs)
#
def self._SpatialTransformer(data : MXNet::Symbol?, loc : MXNet::Symbol?, transform_type, sampler_type, **kwargs)
#