class MXNet::NDArray::Internal
- MXNet::NDArray::Internal
- Reference
- Object
Defined in:
Class Method Summary
- ._add(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, **kwargs)
- ._arange(start, **kwargs)
- ._broadcast_backward(**kwargs)
- ._CachedOp(**kwargs)
- ._cond(data : Array(MXNet::NDArray), num_args, num_outputs, cond_input_locs, then_input_locs, else_input_locs, **kwargs)
- ._copy(data : MXNet::NDArray?, **kwargs)
- ._copyto(data : MXNet::NDArray?, **kwargs)
- ._crop_assign(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, begin _begin, end _end, **kwargs)
- ._crop_assign_scalar(data : MXNet::NDArray?, begin _begin, end _end, **kwargs)
- ._CrossDeviceCopy(**kwargs)
- ._CustomFunction(**kwargs)
- ._cvcopyMakeBorder(top, bot, left, right, **kwargs)
- ._cvimdecode(**kwargs)
- ._cvimread(filename, **kwargs)
- ._cvimresize(w, h, **kwargs)
- ._Div(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, **kwargs)
- ._div(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, **kwargs)
- ._div_scalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._DivScalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._Equal(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, **kwargs)
- ._equal(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, **kwargs)
- ._equal_scalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._EqualScalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._eye(n, **kwargs)
- ._foreach(data : Array(MXNet::NDArray), num_args, num_outputs, num_out_data, in_state_locs, in_data_locs, remain_locs, **kwargs)
- ._full(value, **kwargs)
- ._grad_add(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, **kwargs)
- ._Greater(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, **kwargs)
- ._greater(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, **kwargs)
- ._Greater_Equal(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, **kwargs)
- ._greater_equal(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, **kwargs)
- ._greater_equal_scalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._greater_scalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._GreaterEqualScalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._GreaterScalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._histogram(data : MXNet::NDArray?, bins : MXNet::NDArray?, **kwargs)
- ._Hypot(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, **kwargs)
- ._hypot(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, **kwargs)
- ._hypot_scalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._HypotScalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._identity_with_attr_like_rhs(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, **kwargs)
- ._image_adjust_lighting(data : MXNet::NDArray?, alpha, **kwargs)
- ._image_flip_left_right(data : MXNet::NDArray?, **kwargs)
- ._image_flip_top_bottom(data : MXNet::NDArray?, **kwargs)
- ._image_normalize(data : MXNet::NDArray?, mean, std, **kwargs)
- ._image_random_brightness(data : MXNet::NDArray?, min_factor, max_factor, **kwargs)
- ._image_random_color_jitter(data : MXNet::NDArray?, brightness, contrast, saturation, hue, **kwargs)
- ._image_random_contrast(data : MXNet::NDArray?, min_factor, max_factor, **kwargs)
- ._image_random_flip_left_right(data : MXNet::NDArray?, **kwargs)
- ._image_random_flip_top_bottom(data : MXNet::NDArray?, **kwargs)
- ._image_random_hue(data : MXNet::NDArray?, min_factor, max_factor, **kwargs)
- ._image_random_lighting(data : MXNet::NDArray?, **kwargs)
- ._image_random_saturation(data : MXNet::NDArray?, min_factor, max_factor, **kwargs)
- ._image_to_tensor(data : MXNet::NDArray?, **kwargs)
- ._imdecode(mean : MXNet::NDArray?, index, x0, y0, x1, y1, c, size, **kwargs)
- ._Lesser(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, **kwargs)
- ._lesser(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, **kwargs)
- ._Lesser_Equal(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, **kwargs)
- ._lesser_equal(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, **kwargs)
- ._lesser_equal_scalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._lesser_scalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._LesserEqualScalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._LesserScalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._Logical_And(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, **kwargs)
- ._logical_and(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, **kwargs)
- ._logical_and_scalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._Logical_Or(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, **kwargs)
- ._logical_or(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, **kwargs)
- ._logical_or_scalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._Logical_Xor(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, **kwargs)
- ._logical_xor(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, **kwargs)
- ._logical_xor_scalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._LogicalAndScalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._LogicalOrScalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._LogicalXorScalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._Maximum(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, **kwargs)
- ._maximum(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, **kwargs)
- ._maximum_scalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._MaximumScalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._Minimum(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, **kwargs)
- ._minimum(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, **kwargs)
- ._minimum_scalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._MinimumScalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._Minus(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, **kwargs)
- ._minus(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, **kwargs)
- ._minus_scalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._MinusScalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._Mod(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, **kwargs)
- ._mod(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, **kwargs)
- ._mod_scalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._ModScalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._Mul(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, **kwargs)
- ._mul(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, **kwargs)
- ._mul_scalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._MulScalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._Native(data : Array(MXNet::NDArray), info, **kwargs)
- ._NDArray(data : Array(MXNet::NDArray), info, **kwargs)
- ._NoGradient(**kwargs)
- ._Not_Equal(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, **kwargs)
- ._not_equal(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, **kwargs)
- ._not_equal_scalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._NotEqualScalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._onehot_encode(**kwargs)
- ._ones(**kwargs)
- ._Plus(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, **kwargs)
- ._plus(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, **kwargs)
- ._plus_scalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._PlusScalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._Power(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, **kwargs)
- ._power(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, **kwargs)
- ._power_scalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._PowerScalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._random_exponential(**kwargs)
- ._random_gamma(**kwargs)
- ._random_generalized_negative_binomial(**kwargs)
- ._random_negative_binomial(**kwargs)
- ._random_normal(**kwargs)
- ._random_poisson(**kwargs)
- ._random_randint(low, high, **kwargs)
- ._random_uniform(**kwargs)
- ._ravel_multi_index(data : MXNet::NDArray?, **kwargs)
- ._rdiv_scalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._RDivScalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._rminus_scalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._RMinusScalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._rmod_scalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._RModScalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._rpower_scalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._RPowerScalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._sample_exponential(lam : MXNet::NDArray?, **kwargs)
- ._sample_gamma(alpha : MXNet::NDArray?, beta : MXNet::NDArray?, **kwargs)
- ._sample_generalized_negative_binomial(mu : MXNet::NDArray?, alpha : MXNet::NDArray?, **kwargs)
- ._sample_multinomial(data : MXNet::NDArray?, **kwargs)
- ._sample_negative_binomial(k : MXNet::NDArray?, p : MXNet::NDArray?, **kwargs)
- ._sample_normal(mu : MXNet::NDArray?, sigma : MXNet::NDArray?, **kwargs)
- ._sample_poisson(lam : MXNet::NDArray?, **kwargs)
- ._sample_uniform(low : MXNet::NDArray?, high : MXNet::NDArray?, **kwargs)
- ._scatter_elemwise_div(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, **kwargs)
- ._scatter_minus_scalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._scatter_plus_scalar(data : MXNet::NDArray?, scalar, **kwargs)
- ._scatter_set_nd(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, indices : MXNet::NDArray?, shape, **kwargs)
- ._set_value(**kwargs)
- ._shuffle(data : MXNet::NDArray?, **kwargs)
- ._slice_assign(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, begin _begin, end _end, **kwargs)
- ._slice_assign_scalar(data : MXNet::NDArray?, begin _begin, end _end, **kwargs)
- ._square_sum(data : MXNet::NDArray?, **kwargs)
- ._sub(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, **kwargs)
- ._unravel_index(data : MXNet::NDArray?, **kwargs)
- ._while_loop(data : Array(MXNet::NDArray), num_args, num_outputs, num_out_data, max_iterations, cond_input_locs, func_input_locs, func_var_locs, **kwargs)
- ._zeros(**kwargs)
Class Method Detail
def self._cond(data : Array(MXNet::NDArray), num_args, num_outputs, cond_input_locs, then_input_locs, else_input_locs, **kwargs)
#
def self._crop_assign(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, begin _begin, end _end, **kwargs)
#
def self._foreach(data : Array(MXNet::NDArray), num_args, num_outputs, num_out_data, in_state_locs, in_data_locs, remain_locs, **kwargs)
#
def self._image_random_color_jitter(data : MXNet::NDArray?, brightness, contrast, saturation, hue, **kwargs)
#
def self._sample_generalized_negative_binomial(mu : MXNet::NDArray?, alpha : MXNet::NDArray?, **kwargs)
#
def self._scatter_set_nd(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, indices : MXNet::NDArray?, shape, **kwargs)
#
def self._slice_assign(lhs : MXNet::NDArray?, rhs : MXNet::NDArray?, begin _begin, end _end, **kwargs)
#
def self._while_loop(data : Array(MXNet::NDArray), num_args, num_outputs, num_out_data, max_iterations, cond_input_locs, func_input_locs, func_var_locs, **kwargs)
#